98 research outputs found

    Adult tissue-derived neural crestā€like stem cells: Sources, regulatory networks, and translational potential: Concise review

    Get PDF
    Neural crest (NC) cells are a multipotent stem cell population that gives rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Preā€migratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NCā€like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a postā€migratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC inā€vivo provides insights into means for differentiating NCā€like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders

    JNK regulates compliance-induced adherens junctions formation in epithelial cells and tissues

    Get PDF
    We demonstrate that c-Jun N-terminal kinase (JNK) responds to substrate stiffness and regulates adherens junction (AJ) formation in epithelial cells in 2D cultures and in 3D tissues in vitro and in vivo. Rigid substrates led to JNK activation and AJ disassembly, whereas soft matrices suppressed JNK activity leading to AJ formation. Expression of constitutively active JNK (MKK7-JNK1) induced AJ dissolution even on soft substrates, whereas JNK knockdown (using shJNK) induced AJ formation even on hard substrates. In human epidermis, basal cells expressed phosphorylated JNK but lacked AJ, whereas suprabasal keratinocytes contained strong AJ but lacked phosphorylated JNK. AJ formation was significantly impaired even in the upper suprabasal layers of bioengineered epidermis when prepared with stiffer scaffold or keratinocytes expressing MKK7-JNK1. By contrast, shJNK1 or shJNK2 epidermis exhibited strong AJ even in the basal layer. The results with bioengineered epidermis were in full agreement with the epidermis of jnk1(-/-) or jnk2(-/-) mice. In conclusion, we propose that JNK mediates the effects of substrate stiffness on AJ formation in 2D and 3D contexts in vitro as well as in vivo

    Interactive video retrieval in the age of effective joint embedding deep models: lessons from the 11th VBS

    Full text link
    This paper presents findings of the eleventh Video Browser Showdown competition, where sixteen teams competed in known-item and ad-hoc search tasks. Many of the teams utilized state-of-the-art video retrieval approaches that demonstrated high effectiveness in challenging search scenarios. In this paper, a broad survey of all utilized approaches is presented in connection with an analysis of the performance of participating teams. Specifically, both high-level performance indicators are presented with overall statistics as well as in-depth analysis of the performance of selected tools implementing result set logging. The analysis reveals evidence that the CLIP model represents a versatile tool for cross-modal video retrieval when combined with interactive search capabilities. Furthermore, the analysis investigates the effect of different users and text query properties on the performance in search tasks. Last but not least, lessons learned from search task preparation are presented, and a new direction for ad-hoc search based tasks at Video Browser Showdown is introduced

    Neural crest stem cells from human epidermis of aged donors maintain their multipotency in vitro and in vivo

    Get PDF
    Neural crest (NC) cells are multipotent stem cells that arise from the embryonic ectoderm, delaminate from the neural tube in early vertebrate development and migrate throughout the developing embryo, where they differentiate into various cell lineages. Here we show that multipotent and functional NC cells can be derived by induction with a growth factor cocktail containing FGF2 and IGF1 from cultures of human inter-follicular keratinocytes (KC) isolated from elderly donors. Adult NC cells exhibited longer doubling times as compared to neonatal NC cells, but showed limited signs of cellular senescence despite the advanced age of the donors and exhibited significantly younger epigenetic age as compared to KC. They also maintained their multipotency, as evidenced by their ability to differentiate into all NC-specific lineages including neurons, Schwann cells, melanocytes, and smooth muscle cells (SMC). Notably, upon implantation into chick embryos, adult NC cells behaved similar to their embryonic counterparts, migrated along stereotypical pathways and contributed to multiple NC derivatives in ovo. These results suggest that KC-derived NC cells may provide an easily accessible, autologous source of stem cells that can be used for treatment of neurodegenerative diseases or as a model system for studying disease pathophysiology and drug development

    Reprogramming Postnatal Human Epidermal Keratinocytes toward Functional Neural Crest Fates

    Get PDF
    During development, neural crest cells are induced by signaling events at the neural plate border of all vertebrate embryos. Initially arising within the central nervous system, neural crest cells subsequently undergo an epithelial to mesenchymal transition to migrate into the periphery, where they differentiate into diverse cell types. Here we provide evidence that postnatal human epidermal keratinocytes, in response to FGF2 and IGF1 signals, can be reprogrammed toward a neural crest fate. Genome-wide transcriptome analyses show that keratinocyte-derived neural crest cells are similar to those derived from human embryonic stem cells. Moreover, they give rise in vitro and in vivo to neural crest derivatives such as peripheral neurons, melanocytes, Schwann cells and mesenchymal cells (osteocytes, chondrocytes, adipocytes and smooth muscle). By demonstrating that human KRT14+ keratinocytes can form neural crest cells, even from clones of single cells, our results have important implications in stem cell biology and regenerative medicine

    Reprogramming Postnatal Human Epidermal Keratinocytes toward Functional Neural Crest Fates

    Get PDF
    During development, neural crest cells are induced by signaling events at the neural plate border of all vertebrate embryos. Initially arising within the central nervous system, neural crest cells subsequently undergo an epithelial to mesenchymal transition to migrate into the periphery, where they differentiate into diverse cell types. Here we provide evidence that postnatal human epidermal keratinocytes, in response to FGF2 and IGF1 signals, can be reprogrammed toward a neural crest fate. Genome-wide transcriptome analyses show that keratinocyte-derived neural crest cells are similar to those derived from human embryonic stem cells. Moreover, they give rise in vitro and in vivo to neural crest derivatives such as peripheral neurons, melanocytes, Schwann cells and mesenchymal cells (osteocytes, chondrocytes, adipocytes and smooth muscle). By demonstrating that human KRT14+ keratinocytes can form neural crest cells, even from clones of single cells, our results have important implications in stem cell biology and regenerative medicine

    CDH2 and CDH11 act as regulators of stem cell fate decisions

    Get PDF
    Accumulating evidence suggests that the mechanical and biochemical signals originating from cellā€“cell adhesion are critical for stem cell lineage specification. In this review, we focus on the role of cadherin mediated signaling in development and stem cell differentiation, with emphasis on two well-known cadherins, cadherin-2 (CDH2) (N-cadherin) and cadherin-11 (CDH11) (OB-cadherin). We summarize the existing knowledge regarding the role of CDH2 and CDH11 during development and differentiation in vivo and in vitro. We also discuss engineering strategies to control stem cell fate decisions by fine-tuning the extent of cellā€“cell adhesion through surface chemistry and microtopology. These studies may be greatly facilitated by novel strategies that enable monitoring of stem cell specification in real time. We expect that better understanding of how intercellular adhesion signaling affects lineage specification may impact biomaterial and scaffold design to control stem cell fate decisions in three-dimensional context with potential implications for tissue engineering and regenerative medicine

    A Novel Role of Fibrin in Epidermal Healing: Plasminogen-Mediated Migration and Selective Detachment of Differentiated Keratinocytes

    Get PDF
    Recent studies have shown that fibrin promotes epidermal regeneration in vitro and maintains the stem cell population after transplantation of keratinocytes in vivo. As epidermal keratinocytes do not express integrin Ī±vĪ²3, the receptor for fibrin and fibrinogen, the mechanism through which fibrin affects epidermal cells remains elusive. To investigate the role of fibrin in epidermal wound healing, we developed an in vitro model in which fibrin was added to the top of wounded keratinocyte monolayers grown on collagen. With this matrix topology, keratinocytes migrate between the collagen on their basal side and fibrin on their apical side mimicking migration of the epidermis in vivo. Using this model, we found that fibrin promoted keratinocyte migration in low and high calcium concentrations by exposing the cells to plasminogen. The migration rate depended strongly on the concentration of fibrinogen and the rate of plasmin-mediated fibrin degradation. Surprisingly, fibrin and fibrinogen caused significant detachment of keratinocytes which was prevented by the addition of calcium. Further examination using flow cytometry revealed that the detached cells were larger, more granular, and had very low levels of Ī²1 integrin, which are all signs of differentiated keratinocytes. Our results suggest a novel dual role of fibrin in epidermal healing. First, fibrin promotes keratinocyte migration indirectly by exposing plasminogen to migrating cells, and second, fibrin selectively disrupts adhesion of differentiated keratinocytes. Our data are novel and may have important implications in understanding wound healing and in the use of fibrin as a biomaterial for protein and gene delivery

    Retrovirus-Associated Heparan Sulfate Mediates Immobilization and Gene Transfer on Recombinant Fibronectin

    No full text
    Recombinant retroviruses have been shown to bind to fibronectin (FN) and increase the efficiency of gene transfer to a variety of cell types. Despite recent work to optimize gene transfer on recombinant FN, the mechanism of retrovirus binding to FN and the interactions of target cells with the bound virus remain elusive. We investigated the roles of virus surface glycoprotein (gp70), cell-conditioned medium, and proteoglycans in mediating retrovirus binding to FN. We also examined the role of Polybrene (PB) in these interactions. We found that gp70 is not involved in retrovirus binding to FN. Immobilization of the virus, however, does not overcome its receptor requirement, and gp70 is still needed for successful gene transfer. Our results clearly show that retrovirus binds FN through virus-associated heparan sulfate (HS) and that binding is necessary for transduction without PB. Two distinct modes of gene transfer occur depending on PB: (i) in the presence of PB, retrovirus interacts directly with the target cells; and (ii) in the absence of PB, retrovirus binds to FN and target cells interact with the immobilized virus. PB may promote the former mode by interacting with the virus HS and reducing the negative charge of the viral particles. Interestingly, the latter mode is more efficient, leading to significantly enhanced gene transfer. A better understanding of these interactions may provide insight into virus-cell interactions and lead to a more rational design of transduction protocols
    • ā€¦
    corecore